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INTRODUCTION 

IN RECENT years heat transfer in saturated porous media 
has received considerable attention because of its important 
applications in geophysics and energy related engineering 
problems. In most of the previous studies [l-6], either for 
natural or mixed convection, the boundary-layer for- 
mulation of Darcy’s law and the energy equation were used. 
However, the non-Darcy flow situation which may prevail 
in some of the above applications has not received much 
attention. Recently, Plumb and Huenefeld [7], and Vasantha 
et al. [8] have reported the non-Darcy natural convection 
for different configurations in saturated porous media by 
employing the Ergun model 19). 

In this paper, the same non-Darcy flow model is used and 
steady non-Darcy convection, in the form of natural, mixed 
and forced convection, is considered for a heated horizontal 
surface embedded in a saturated porous medium. Under the 
assumed conditions, a similarity solution exists for the case 
of constant surface heat flux. 

ANALYSIS 

Consider two-dimensional non-Darcy convection over a 
horizontal impermeable surface embedded in a saturated 
porous medium. In the mathematical formulation of the 
problem, we assume (i) constant fluid and medium (iso- 
tropic) properties and (ii) local thermodynamic equilibrium 
between fluid and solid phases. Under these assumptions, 
the governing equations are given by 
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The boundary conditions are 

y=O, T,=T,+Ad, v=O 

y -+ co, T = T,, u = 0 (naturalconvection) (5) 

= U, = Rx’” (mixedconvection). (6) 

As can be seen, the major difference between the Ergun 
and the Darcy models is that the former takes into account 
the inertial effect. A detailed discussion of the limitation of 
Darcy’s law and non-Darcy flow models is presented by Bear 
tw. 

When the Boussinesq and boundary-layer approximations 
are invoked, the governing equations in terms of stream 
function, $, are reduced to 

KgB aT = --- 
v ax (7) 

a+ az- a* az- a9 
ayz---=ady2. ax ay (8) 

With the properly chosen similarity variables, equations (7) 
and (8) can be transformed to a set of ordinary differential 
equations. 

Natural convection 
The suitable similarity variables for solving the non-Darcy 

natural convection problem are those introduced by Cheng 
and Chang [3] 

q = (&)ll3Y 
x 

$ = 04”3Y(tl) 

6 = (T-T,)/(T,--T,). 

After transformation, the resulting equations are 

(9) 

(10) 

(11) 
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Obviously, the equations will be independent of x, if ). = l/2, 
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R* 

Ra 
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TW 
T, 

NOMENCLATURE 

constant defined in equation (5) 
constant defined in equation (6) 
dimensionless stream function 
parameter of the inertial effect on natural 
convection, (K’u/v)(Kg~A/w@” 
local heat transfer coefficient 
effective thermal conductivity of the saturated 
porous medium 
permeability 
inertial coefficient of the Ergun equation 
local Nusselt number, hxjk 
pressure 
Peclet number, U,x/ct 
parameter of the inertial effect on mixed 
convection, K’U,/v 
modified Rayleigh number, KgB(Tw - T,)x/va 
temperature 
surface temperature 
ambient temperature or free stream temperature 

u, v 

RESULTS 

the boundary 

rl = f=O 

rI+co. B=O, f’=O. 

convection 

(16) 

The similarity variables applicable for mixed 
convection have also been introduced by Cheng 

( > u x “2.y 
2% 

CL x 

IL = (~~&)“Y-(V). 
Equations (7) and (8) are transformed to 

(19) 

These will be independent of x if WI = 0 and I = l/2, that is, 
a uniform flow over a horizontal surface where the surface 
temperature varies with x “* Then, the above equations can 
be reduced to 

f”+R*[(f’)‘]’ = &(+e) (22) 

8” = f(Bf’-fo’) (23) 

where R * = K’ U,/v, and the corresponding boundary con- 
ditions are 

‘I = 0, fI=l, f=O (24) 

r)-+co, e=o, f’=l. (25) 

Forced convection 
It is noted that the governing equations for non-Darcy 

forced convection can be deduced from equations (22) and 
(23) by simply setting Ra/(Pe)“* = 0. Therefore 

f”+R*[(f’)‘l’ = 0 (26) 

8” = gef’-feq. (27) 

The transformed ordinary differential equations, with the 
corresponding boundary conditions, are solved by numerical 
integration using the Rung*Kutta method by the shooting 
technique with a systematic guessing of 0’(O) andf’(0). 

The resulting profiles of dimensionless velocity and tem- 
perature are shown in Figs. 1 and 2 for natural convection, 
and in Figs. 3 and 4 for mixed convection. Selected values 
of -0’(O) and f ‘(0) are also given in Table 1. It is interesting 
to note that the solutions of equations (26) and (27) turn out 
to be the same as those of Darcy forced convection. This 

8 

4 

2 

FIG. 1. Dimensionless temperature profile for non-Darcy 
natural convection. 
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FIG. 2. Dimensionless velocity profile for non-Darcy natural 
convection. 

implies that the non-Darcy term has little significance in 
forced convection, which is true because of the boundary- 
layer approximation used in the analysis. 

The local surface heat flux for natural convection is given 
by 

and for mixed convection 

x P- 2g3[ - P(O)] (28a) 

e 

-C 

XX(~~+~-'~~[-~'(O)]. (28b) 
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FIG. 3. Dimensionless temperature profile for non-Darcy 
mixed convection. 
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FIG. 4. Dimensionless velocity profhe for non-Darcy mixed 
convection. 

For t = 112 and m = 0, these correspond to the case of 
constant surface heat flux. 

The heat transfer coefficient in terms of the Nusseh number 
can be expressed as 

natural convection 
NU 

- = -[P(O)], 
(Rn)“’ 

mixed convection &= - wMt?x 

forced convection -.!!k- = 0.8862. 
(Pep2 

Equation (30) is plotted in Fig. 5 as a function of Ru/(Pe)“*. 
The limiting cases of free convection and forced convention 

are also shown as asymptotes in the same figure. It is noted 
that the asymptotes of non-Darcy pure natural convection 
are not linear, which is different from the Darcy case. The 
corresponding free convection asymptotes can be obtained 

___._i 

- free convection asymptote 
-.-.- forced convection asymptote 

Fro. 5. Heat transfer results for non-Darcy mixed convection. 
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Table 1. Values of -Q’(O) and J“(0) for non-Darcy mixed and natural convection 
-. 

R*=O R* = 0.1 R+ = 1 R* = 10 
Ra/Pe3i2 -B’(O) .f’(O) -W(O) f’(O) -t)‘(O) f’(0) -W’(O) -f’(O) 

0.1 
0.5 

2 
4 
8 

10 
20 
30 
40 
50 

0.9137 1.0865 0.9092 1.0720 0.8956 1.0291 0.8876 1.0042 0.1 0.7919 i .0S57 
1.0077 1.4015 0.9878 1.3306 0.9295 1.1362 0.8929 I .0207 0.5 0.7299 0.8683 
1.1020 1.7474 1.0666 1.6082 0.9661 1.2547 0.8994 1.0409 1 0.6848 0.7508 
1.2495 2.3419 1.1883 2.0729 1.0266 1.4569 0.9117 I .0795 2 0.6304 0.6266 
1.4645 3.3543 1.3614 2.8077 1.1180 1.7788 0.9343 1.1511 4 0.5715 0.5084 
1.7610 4.9990 1.5904 3.9125 1.2446 2.2595 0.9735 1.2773 8 0.5121 0.4042 
1.8763 5.7191 1.6763 4.3657 1.2932 2.4551 0.9907 I .3337 IO 0.4933 0.3740 
2.3059 8.8010 1.9820 6.1500 1.4688 3.2145 1.0620 I .5740 13.57 0.4679 0.3355 
2.6139 11.3978 2.1884 7.5060 1.5888 3.7829 1.1174 1.7688 15.87 0.4552 0.3171 
2.8614 13.7193 2.3474 8.6340 1.6820 4.2528 I. 1633 1.9357 29.24 0.4078 0.2534 
3.0713 15.8529 2.4780 9.6144 1.7588 4.6582 I .2027 2.0834 46.42 0.3737 0 3124 

FIG. 6. The ratios of heat transfer coefficient with inertial 
effects to that with no inertial effects. 

by rewriting equation (29) as 

(32) 

and applying the relation between G * and R * 

Gf = R*(Ra/Pex:2)‘.‘, (33) 

With a given R* and Ra/Pexi2, G * can be determined through 
equation (33). Once G* is specified, [ - e’(0)].c can be solved 
from equations (14) and (15). Therefore, the free convection 

G’ -O’(O) I’(O) 

asymptote is obtained, from equation (32). for each cor- 
responding R *. 

The results can also be best presented by the ratio of the 
heat transfer coefficient for the non-Darcy case to that for 
the Darcy case, which is shown in Fig. 6. It is observed that 
the inertial term has a pronounced effect on the flow for 
higher values of G* and R*. 
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